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A single drain model is used for investigating with due regard to physical para- 

meters the local depression appearing over a drain in a stratum of unbounded 
depth and extension under certain conditions, one of which is the increase of 
the drain discharge rate. Such increase is shown to be limited to some value 
(for given width of the section free of flooding and depth of the drain sink} that 
corresponds to the limit case [l] in which the depression curve has a cusp. 

The condition of local depression existence in the case of more general models of 
plane zero-pressure head flows were earlier formulated by the author in [2 - 43 in 

terms of conformal mapping parameters, but the physical aspects of this effect were 
only tentatively outlined there. 

The continuation of solution for the above model with respect to one of the mapping 

parameters leads to the appearance of new hydrodynamic models such as the flow to a 
point sink on the surface of a vertical screen, the flow over the screen, and over an 
underground projection. In conclusion a model is considered which unifies the preced- 
ing ones using the flow over a screen with partial interception by a drainage sink in the 

screen surface, as the basic scheme. In cases close to the limit simple approximate 
relations are established between seepage properties of the stream and controlling geo- 

metrical parameters. Results of numerical calculations are presented in the form of 

curves. 

l. M o d e 1 l. Let us consider a plane zero-pressure head steady seepage in an 
unbounded (with respect to depth and extension) stratum from the ground surface flood- 
ed everywhere except a band of width 21, to a tubular drain laid in the middle of it. 

The right-hand half of the seepage region bounded in this case by the depression curve 

I is schematically shown in Fig, l,a, where the drain is simulated by the point sink 
D whose discharge rate we denote by 20, We shall use the following dimension- 

less quantities: the complex coordinate z= r -i- iy and the complex potential 
w = cp + iq related tothe respective actual quantities zf and or by formulas 

(X is the seepage coefficient) 

z= Zf / I, 0 = o&@ (J.. 1) 

Regicxr 0 is shown in Fig. 1, b. 
when Q = 0 the free surface AB of the ground water coincides with the plane 

Y = 0 and the fluid pressure p increases with the depth of stratum in conformity 

with the hydrostatic law p = yy , where y is the specific gravity of water. If we 

assume that when the sink is in operation the pressure at every fixed point of region Z, 
except the sink itself, is continuously dependent on the rate of flow. then, taking the 

aforesaid into account, we can conclude that, at least for low flow rates, thepressure 

I.131 
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over some initial part of section AD must increase as before, and then drop down to 
p~~--ccl at point D. There is then a slit along A in the Joukowskii function 

plane 0 = 0 + iz , denoted by the numeral 1 in Fig. 1, c. The slit top F 
corresponds to the point of maximum pressure in section AD. 

d 
Fig. 1 

A F 
b 

C 

The mapping of regions,o and 8 onto the half-plane Im 5 > 0 (Fig. 1, d) 

yields 

Q1 4 
0=x s _+iQ=qarthJfl-_+iQ, q= 

t 56f--6 
+Q (1.2) 

F; 

s 
C%-~~ r_iQ = (1.3) 

a t;l/C-a 

Using (1.4) we obtain that along section A C (5 < a) 

l-$-h liv-/1-< 
-7 l/a+ T/a--S 

(1.5) 

Bysettingm(1.4) %=I, z=l andin(l.5) c=O,y= d wespecify 
the width of the band free of flooding and the drainage sink depth. AS the result we 
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obtain for parameters a and f the system of equations 

q (ah - arctg a) = 1 

q(h+lnJh+a2)=d 

1 
(1.6) 

-- 
a 1, A=$) 

(1.7) 

Let us investigate the dependence of the flow pattern on the sink discharge rate 
with fixed geometrical parameters, starting with the unperturbed state CJ = 0 for 
which with allowance for (1.7) we have 

(1.8) 

f=fo=O, h-ho=ca 

Then using system (1.6), (1.7) and denoting differentiation with respect to 4 by 
a prime, we obtain 

ad-l 
f=a - 

ad - 1 

Inl/l+az+darctgcf ’ 
4= 

a In v/1 f azf arctg a 
(1.9) 

?L= -$-]&+a” 

a’ = _ 2a% (a-In 1/i + aa+ arctg a) 

9 (A - 1) 
) fL& +$(a+d) (l.10) 

On the strength of the last of equalities (1.8) and the continuous dependence of 1 
on Q we have h > 1 in some finite interval of the drain flow rate increase (from 
the initial value q = 0). According to (1.10) a’ < 0 and, consequently, for 
any q in the considered interval parameters u and f are uniquely determined by 

system (1.6), (1.7), or by the equivalent to it system of the first two of Eqs. (1.9). 
It also follows from (1.9) and (1.10) that h monotonically decreases as 4 increases, 

and for some q = q* we obtain 3t=l, i.e. a=f=a,, with a*and 

q* determined, respectively, from the first and second of formulas (1.9) when 

a = f. Hence, when q = q* , point F coincides with point A of the de- 
pression curve, while along AD , using (1.3) we obtain for pressure the following 

relationship 

p/y = -q* (arth ~~1 - G/a, - -r/l - 5/a,) < 0, 0 < 5 <a* (1.11) 

For the depression curve AB, where CEO = dy; we have in conformity with 

(1.2) - (1.4) 

dY . do 
dz=‘de=- 

(1.12) 

@Y -=-- sp (5) 
dxa L (54)3(1-p 

P (5) = 25" - (1 + 3a) 5 + 

2 (5 - r1) (5 - r2) 

rl,2 = a + (1 - a _F -f/0)/4, 
D1=1+8f-9a 

[(a - f) + a (1 + f)l = (1.13) 

D = (1 - a) D1 
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It can be readily checked that when D > 0 we have r-1,2 E (a, $1 * 
Turning to (1.12) we note that in this case the curve AZ3 has two inflection points 
RI (rd and Ns (r2) (Fig. 1, a)bounding on it a convexity section, and on sections 
AR, and RIB the compression curve is concave. When D < 0 the depression 

curve is concave throughout its length. 

In accordance with (1.13) sign D = sign D1 , and because of (1.10) the ex- 
pression for D I monotouicalKy increases with the increase of q and is evidently posi- 

tive for 9 zz. g,!, (0 .z f). On the other hand, for low CJ we have D1 cs f- 9a. 
(see (1.8)). Owing to this we have two alternatives: 

a) a, < $‘a (d < I/%); we have D > 0 when 0 < Q 6 Q*; 

b.I ao > *is fd > 1/ ii;;o; in this case D < 0 when 0 < q < q,., and 

D>O when qr<q\<q*. The quantity &. is determined by equality (1.9) 

with f = (1 - 9a)/8 (Dl = D = 0). 
From the physical point of view the above means that when the width 21 of 

the drained (not flooded) section of the ground surface exceeds 

Fig. 2 

the depth d of the drainage sink by more than 4 r/‘g times, the depression curve 
has two inflection points RI and Rz thr~ghout the interval (0, q*) of values of 

4. In the opposite case it remains concave as long as Q < &, and monotonic- 

ally flattens out with increasing distance from the flooded surface. With the subsequ- 

ent increase of CJ on AB a section of local depression AR1 appears in the drain 
zone. As Q approaches ~IJ.+ we have in accordance with (1.13) ra -+ a , and the 

section AR2 of the depression curve flattens out within the aforementioned section 
A&r. It follows from (1,12) that the tangent to the depre&on curve is horizontal at 

point A for aIf 4 < q* (a > f) ~11, and the ordinate of that point y.& = q arth 

v1-a monotonica~y increases with increasing q + as implied by (1. IO), At 

the limit with Q = pa, a = f from (1.13) and (1.12) we have rZ===a, (dY/ 
d&=n = - 00 and, consequently, point & coincides with point A which be- 

comes the cusp of the depression curve. 
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Thus the local depression appears already at a very early stage of draining as the 
extension of the depression curve in relation to the drain depth is increased to a 
specific value, while when the extension is small, it appears at a latter stage of drain- 
ing and develops with the subsequent increase of the drain flow rate to some admissi - 
ble Limit value. We call critical the mode of flow which takes place under these con- 
ditions. The necessary condition for its realization is according to (1.11) the maint- 
enance of pressure below atmospheric along the whole section AD [I]. 

The depression curves shown in Fig, 2 were calculated for d =: 0.5 (a,, = 0.2) 
and Q = 0.0702, 0,1173, 0.1670, 0.2101, 0.2469, 0.2600 (curves_Z--6, re- 
spectively). The inflection points are indicated by crosses. Local depression appears 
in this case when Q = Qr = 0.1173 at point RI,% (0.4771, 0.0837); ; using 
(1.4) and (1.13) it is possible to show that generally 5 (fix, s) < 0.5 at the instant 
of appearance of inflection points on the depression curve. With increasing Q the 
local depression widens and deepens. in the critical mode when Q = Q* = 0.2600, 
it is bounded by point Rr (0.6484, 0.1374) with a = f = a* = 0.01756, y 
(R,, A)= y, = 0.4485. nor each calculated Q curves of pressure variation 
along AD were also determined. A set of such curves may be used for determin- 
ing Q for a specified pressure head at some point of the stream within section AD. 

Let us consider two cases close to Limiting ones. 
1) d z 0 which in accordance with (1.1) relates either to the lifting of the 

sink z> or wide~g of the drained section. &I this scase, on the strength of@. 7) 
- (I., 9) we have 

o < e. s (d/Q2, 4 2 d I In JOJG = 0 Win (t/41 

expressed in terms of actual quantities If, dt, and Q, q but with the subscript 
f omitted. 

2) dzc0. We write the equation for a, in the form 

We immediately establish that da, / dd > 0 s hence a, is bounded below, 
as d is increased. Then, turning to (1.14), we conclude that a, -+ 1 as d -+ 0~1 
and, since a > a*, using actual quantities, we obtain 

1 - a, z (3Z/d~ia, I - a = 0 [(3Z/d)‘taI (1.15) 

GAB = q arth fl - 5 = q-0 [(3Z/d)‘/s], q = 
a 

--- 
h+lnl/i+u~ 

w 

d 
h’ q*=d 

Which implies that in the case of limited 4 the depth of sink as well as the reduct- 
ion of 1 is accompanied by a rise of the depression curve, although on the other 
hand, the increase of d makes possible the increase of drainage rate. As the 

result, for the critical mode we have $jA* x (3@)‘/~ , hence the sinking of a 
drain widens the range of possible lowering of the ground water level. 
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2. M o d e 1 2. The one-to-one correspondence between the rate of flow Q 
and parameter a in model 1 is defined by the first of equalities (1.10) and provides 
the possibility of representing the flow pattern, investigated in Sect, 1 and defined by 

formulas (1.2) - (1.4) for h > 1, as the result of decreasing parameter a from 
a0 to a,. However (I., 2) - (1.4) may be considered also for a E (0, a*>. 

Let us clarify the result of such extension of the solution. 

Using (1.9) and (1.10) we obtain 

dh I -xi=-%- C l-l- (h--)d 3 aa(ad-i) (2.1) 

i.e. &, / da > 0 when a = a, fh = 1) and, consequently, h < 1 in the 

finite interval (al, a*) of a < a,. If then al > 0 and ht%)= 1, by 
virtue of (2.1) we have dh / da > 0 when a = al and h>i in some inter- 

val (al, a1 + 6) . The contradiction with the previous statement means that the 

relation h < 1 (a < f) is maintained throughout the interval (0, a*) of para- 

meter a. Taking this into account, in conformity with (1. lo), we conclude that 

dq / da > 0, df / da > 0; a E (0, a*) (2.2) 

Pt follows from (1.4) that the abscissa 5 of the depression curve AB ( which 
together with the slit along it in the 8 -plane are denoted in Fig. 1, c by the numeral 

1) now decreases on section AP, so that r < 0 when a < 5 < r,; r. 
is determined using the equation 

U = tg (Au), u=j/r,fa-3 (2.3) 

The left-hand half of the depression curve, which is symmetric to the right-hand 

one, similarly enters the half-plane x > 0. The resulting two-sheeted superposit- 

ion in the seepage plane makes the previous treatment of solution unacceptable, how- 

ever, when a<fs it is possible to give it a physical interpretation in the scheme 

of one-sided inflow. For this we shall in addition to the above exposition, analyze 

the flow pattern along section AC, where by virtue of (1.2) - (1.4) the relations 

(2.4) 

at T/G- -= 
4 2f p G) [(I - 5) (a - O”l-“2 

are satisfied (I& is the vertical component of the seepage rate), 
Reverting to (1.13) we observe that in the case of a < f, when rs CZ (- OD, 

4, the point Rs (rs) represents the maximum of function 7 (5) along sect- 

ion AC. Since rs ==: a, P (0) cz 1 + f > 0 when umf, hence direct- 

ly after parameter a had passed through the value a, followed by its further decrease, 

we have in some interval r2 6% (0, a), R, E AL). & accordance wrth (2.4) 
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we have z (5) > 0 in the interval (0, g>; the quantity g for which t = 

WY= 00 determined 

8 = (Vd [I + v - 1/i + 4 (P/a) (4 - Nl (2.5) 

Thus in some finite interval (a*,, a,) of values of parameter a the ordinate 
y along section AC! first decreases, reaches its minimum at point G (g), and 

then increases up to point C where Y= OQ, and D E GC. Hence in the z - 

plane we have a vertical screen with its top at point G; a part of the stream flows 
over it, andin reverse motion reaches the sink z) on the inner surface of the screen. 

The ordinate S of point G is defined by formula (I.. 5) with 5 = g 

(2.6) 

To clarify the pattern further we investigate the asymptotics of solution when 
azO(a 2 oo). Using (1.9) we obtain 

from which in conforms with (2.5) and (2.6) we obtain 

g, $z-&” N- ( 1 
ssq 1+1n* ( )=++l+f-i-f)] 

(2.8) 

Using formulas (2.3). (2.7), (2.8), and (X.4), for the ordinate y, of point 
R, (rO) lying on the depression curve above point G we obtain 

(2.9) 

Then, in accordance with (1.4) and (2.7) we can write 

yA=qarthl/l-aaqln 2 -zz2:+ qln2 
c 

zp=q(hf/f/a-_-arctg1C/f/a-_)a-Q 

(2.10) 

The first relation in (2.8) implies that when parameter o is decreased the sink 

JJ (5 = 0) appears on the screen external surface. From (2.7) and (2.8) also fol- 

lows that q-+-O as a+ 0, the screen moves upward screening the sink 

more and more from the catchment contour, i.e. the flooded part of the ground 

surface. 
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Depression curve.? calculated by Eq. (1.4) are shown in Fi&. 3 by the solid lines 
1-5 for the previously specified sink depth d = 0.5 and a = 3,7836. 10-3,iO-4, 
lo+, lO_"', and iO+O = 0.2390, 

curve with 

the screen top. The meaning of dash lines will be explained in Sect. 3. 

The calculations show that, as parameter a is decreased from a, = 0.01756 

to %s I= 0.003784, parameter s monotonically increases from 0.4485 to 0.5, 
which means that the screen sinks and for a = a,, the sink D is at its top. In 
the interval f0, ar,J of the above calculation values of parameter a, the quant- 

ity s monotonically decreases from 0.5 to zero, as d is decreased. Taking this in- 
to consideration it is possible to invert function s (a) and consider the process to be 

the result of the initial screen sinking from y+ down to the sink level which for the 

time being is at the inner surface of the screen, followed by its rise but, as if from 

the opposite side of the sink. since at each of these stages function a (s) is 

monotonic, hence by virtue of (2.2) function 4 (8) is also monotonic. In such 
case under conditions of complete interception by the drain sink of the flow over the 

screen a specific flow rate Q at the sink corresponds to each value of s in the 

indicated intervals. 
The proposed here physical interpreta~on of model 2 is also applicable to model 

1 under condition that s < YA: since in the latter the depression curve AB 

must apporach the impermeable boundary 5 = 0 remaining to the right of it. On 

these physical grounds it is possible to Iink the two considered models. 

-l%z a 

Fig. 3 

Indeed, as long as s < Y, and the 

sink is on the inner surface of the screen, 
the flow in a particular range of its flow 
rate for which s<YA<y,~ conforms 

to model 1, and, as the screen is lower- 
ed to the sink level followed by its lifting 
on the other side of the sink, the flow pat- 
tern of model 2 obtains. 

3. Mode 1 3. It will be seen from 

Fig.3 that when s < 0.2 the depression 

curve is close to the vertical line x = -Q 
on the left of the screen over a considerable 
section, This feature is to some extent 
implied by the last asymptotic formula of 
(2.10). A similar pattern should obtain in 
the case of flow over the screen with sub- 
sequent free fall of the stream along it 
(curve 3 in Fig. 1, a). This model can 

be obtained as the limit case of model 2 
by lowering the sink along the screen ex- 
ternal surface to infinity. Taking into ac- 

count at such passing to limit h < 1 
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and assuming the stream rate of flow to be hounded, for large (z in accordance with 

(1.7) and(1.9) we have 

l*~l+a%+ 
2cl 

amexp -- , ( 1 f I/k zzrn 
Q m= & (3.1) 

As the limit, as d + 00 from (1.3), (1.4), and (3.1) we obtain 

Then, using (Z-6), (2. S),and (3.1) we obtain 

s=(l+Q)l/-_++aarshV'--/gg, g-(1/~)(~-~l+4m2) (3.3) 

It is possible in this case to prove analytically that the stream rate of flow Q 
monotonically increases, as s is increased, i. e. with the lowering of the screen. 

The equation of the depression curve is obtained from (3.2) in the form 

x= - Q + (1 -I- 0) sch (Y/ Q) (3.4) 

Model 3 may be considered as the flow of ground water over an underg~und pro- 
tuberance whose im~rmeable contour coincides with one of the streamlines, or may 
be approximated by the latter as the result of varying the quantity s. 

Depression curves of the considered stream calculated by formula (3.4) for the 

same values of s as in model 2 are shown by dash lines in Fig. 3. The flow rate for 

each of the values Q = 0.1992, 0.1608, 0.1130, 0.0569, and 0.0227 were ob- 
tained using formulas (3.3) and (3.1). The last three of these flow rates are virtually 

the same as those obtained earlier for model 2 (for the same S) Q, and the depress- 
ion curves [for the two models] diverge only in the sink neighborhood. The asympto- 

tic formulas (2.8) and (2.9) for s and y. are obtained from (3.1) - (3.3). All 

this shows the closeness of models 2 and 3 for a particular elevation of the screen, as 
the result of which the screened sink looses its effect on the structure and seepage prop- 

erties of the flow. Indeed, for small s and 9 the depression curve rapidly (almost 
exponentially in accordance with (3.4) ) approaches its asymptote x = -Q, and 
the stream itself immediately after passing over the screen top becomes nearly one- 
dimensional; in model 2 it is then intercepted by the sink, while in model 3 it continu- 

es to move downward. 
For high values of Q in conformity with (3.1) - (3.3) we have 

s z 1.4153(2, y. zz 0.9003 vg (3.5) 

Formulas (3.5) may also be considered from the point of view of decreases of 2 
with f&te values of Q. Expressed in terms of real quantities the second of formulas 

(3.5) then assumes the form y. ==: 0.9003 i/ @, and the first remains unchanged, 

becoming an exact equality at the limit of E = 0 . 
ne character of dependence between Q (the axis of abscissas), s and y. (the 

right-hand scale on the axis of ordinates), and parameters a and f (the left-hand 
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scale) is illustrated by curves in Fig. 4 calculated for d = 0,5 for the three describ- 
ed here models; the curves are denoted by corresponding numerals. In the case of 

model 1 we assumed that s = yA. In models 2 and 3 ys appears with s as an 

independent parameter of the discharge rate Q. These curves show that already for 

s < 0.25 functions y,-, (.s) and q (s) are almost identical for models 2 and 3. 

4. M 0 d C 1 4. Using the flow defined in model 3 as the background, we assume 
that a drain sink with a discharge rate Qd begins to operate on the screen surface, 

while part of the water is discharged downward at the rate Qcb (Fig. 5, a), As Qd 
is increased to some specific value Qy dependent on the model geometric 

parameters I, d and S, the drain intercepts the whole ground stream so that Qcb = 
0, and either model 2 or 1 is realized (the latter is only possible when the sink is 

located on the inner screen surface). Thus model 4 is a generalization of the [three] 

previous ones, which are its limit cases. FunCtiOn 8 (5) is still represented by form- 

ula (1.3) (the position of point P will be discussed later), In region o (Fig. 5, b) we 

have now a slit associated with the stream separation. Mapping it onto the half-plane 

a,f 
17.2 

44, 
G!f 

il.7 0.2 P, 0.3 
Fig, 4 

Fig. 5 



Hydrodynamic models of drainage 1141 

Imc > 0 (Fig.S,c) we obtain 

1 

0 = M 5 (f - r) d5 
6 5K-Q)1/~--5 

+iQ==qd~arthl/l-G+ (4.1) 

qca arth 
J s+iQ 

%b - -$ Qeb 

(4.21 

Qcb -I- i (6% arth u”r + qd, arth ‘j/s) 

It is interesting to analyze the flow patterns for fixed 1, cf, and s with varying 
discharge rate Qd in the interval (0, Qdmax ). For this it is necessary to determine 
besides E, d, and s, also the discharge rate QCb and parameters a, 1, and g, 
for which, using (4.1) and (4. Z), we obtain the following system of equations (cf. 

(1.6), (1.7), (2.5), and (2.4)) in dimensionless quantiti~: 

f (r - g) I/a = r (f - &(a - g)(i -g) (r = aqd/(qd -,- 4,1, i/l-_) 

(4.3) 

We restrict ourselves to the preliminary qualitative analysis of the flow. From the 
last equation, which implies that u?v (g) = co, we have 

(4.4) 
f- 

If the sink is on the external surface of the screen, i. e. g < 0, then, as imptied 
by (1.4), j@> r . When Qd z 0 by virtue of (4.3) we have I” =: 0, j z 0 which 
means that points R and P lie directly under the sink, and the second of them is 

the point of maximum pressure in section AD. When Qd = QdmaXt Qcs = 0 
then in accordance with (4.3) and (4.4) 

hence with increasing Qd point P passes onto the depression curve, and at the 

limit when Qeb = 0 we obtain model 2. 
When the sink is located on the inner surface of the screen, one of the following 

variants is possible. 

1) s <Y* (df. Since the screen top is then within the range of possible lowering 
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of the ground water level, the depression curve after reaching some value Qd 
max 

drops over the sink to the screen top [level] and the flow over the latter ceases. The 
section AG in region z degenerates into point G which is simultaneously reached 
by point I? ; as the result we have r = g = a in conformity with the last of Eqs. 

(4.3). If Qd< Qdmax, when the flow conforms to model 4, we have 0 < g < a. 
If then the streams become separated on the inner surface of the screen, i.e. o < r < 
g (which occurs at least at small discharge rates Qd), then by virtue of (4.4) we 

obtain 0< f<r, which means that point F belongs to section RD as the 

point of maximum pressure on the screen surface in the interval AD. When Qdmax 

< Qd < Qd* the flow conforms to model 1. 

2) s=Y*(d). With this position of the screen top Qdmax = Qd*; total absorp- 

tion of the ground stream by the drain is attained in the critical mode described in 

Sect. 1, and for Qd < Qdmax the conclusions arrived at in variant 1 are valid. 

3) S>Y* (d). In this case, when Qd = Qdmax (Qcb = 0) , we have model 2, 

hence 0 < g < a throughout the interval (0, Qdmax) of model 4. Then, since 

r=O for QdzO, and r=a for Qm=: 0 (see (4.3)), point R passes 
from the inner to the outer side of the screen, as Qd is increased. According to 

(4.4) sign (f - r) = sign (r - g) and, consequently, point P is on the same 
side of the screen as point R bypassing simultaneously with it the screen top and 
changing from being a stream absorbed by the drain to a free stream; with further in- 

creases of Qd point P passes onto the depression curve, 

The author thanks N. S. Kolodei for assistance in computations, 
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